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Motivation

• We found a Higgs 
boson!  But how 
“standard-model-like” 
is it?  Could it be 
composite?

• “Traditional” technicolor 
is firmly dead, since f0
(600) in QCD is too 
broad.  But scaled-up 
QCD didn’t work 
anyway.

(credit Jerome Sprecher & symmetry magazine)

• Can argue for composite Higgs-like states in more exotic strongly-coupled gauge 
theories: dilaton if approximate scale-invariance, or PNGBs with different gauge 
groups/irreps
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Overview

• We know there is a transition in strongly-coupled gauge theories where scale 
invariance is restored in the IR.  Lattice is the best way to study this transition, 
lots of groups working on it now.

• Conformal symmetry is hard to see on the lattice!  for technical reasons, we 
usually work at finite mass, which breaks scale invariance.  However, 
dependence of the theory on this mass scale is very different from QCD - no 
PNGBs, all states collapse to zero as mass is removed.  Maybe we can turn a 
bug into a feature and study the IR CFT using mass dependence?

• I will introduce a general framework for mass-deformed CFTs, then show 
case studies for three different theories: SU(2) with 2 adjoint (conformal), SU
(3) with 12 fundamental (controversial), SU(3) with 10 fundamental (near the 
edge?)
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From confining to conformal

• Due to Caswell1, Banks and Zaks2, 
we have an example of a Yang-Mills 
gauge theory vastly different from 
QCD.

• Examine scale dependence of the 
theory via the gauge coupling (β-
function).

1Phys.Rev.Lett. 33 (1974) 244
2Nucl.Phys. B196 (1982) 189
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• For large enough Nf, β-
function has a second zero!  
Weak coupling at all scales 
(note: m=0 only).  Conformal 
symmetry in the IR limit.
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Theories with IRFP lie in 
the conformal window.

(Note: massless fermions, 
fundamental rep.)

CBZ
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Mass anomalous dimension

• The mass anomalous dimension gives the RG flow of the mass operator:

γm =
d(logm)

d(logµ2)

• Also related to the scaling of the chiral condensate:

mψ̄ψ ∼ const. ⇒ �ψ̄ψ� ∼ exp

��
γm(µ)

µ
dµ

�

• Function of the underlying couplings, like the beta-function; takes a constant, 
scheme-independent value at an IRFP.  Crucial to understanding what 
happens when we perturb the IRFP with a small mass!

• In the context of composite Higgs theories, this condensate will generally be 
important for generation of fermion masses (like Higgs vev.)  Large anomalous 
dimension is generally more interesting - can give large scale separation from 
confinement scale.
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Mass deformation

α(µ)

µ

α�

1) Start with a theory in the conformal window, with 
massless fermions.  
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Mass deformation

2) Tune the lattice cutoff so that the fixed-point coupling 
governs physics in the box (ignoring finite-volume 
effects.)

α(µ)

µ

α�

Λ = a−1
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Mass deformation

3) Add a small seed mass m, which will evolve as

α(µ)

µ

α�

Λ = a−1M

m(µ)

µ

Λ = a−1

m(Λ)

M

M

m(µ) = m(Λ)

�
Λ

µ

�γ�

governed by the fixed-point anomalous dimension.  
Fermions screen out at m(M) = M, inducing confinement.
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Mass deformation

α(µ)

µ

α�

Λ = a−1M �

m(µ)

µ

Λ = a−1

M �

M �

m�(Λ)

4) Bound-state masses are set by M, as in QCD-like theory.  
Three major differences here:

-No Goldstones - PS state scales like everything else.
-M is controlled by m:
-Expansion in am, as opposed to                         for χPT

M ∼ m1/(1+γ�)

aM2
π/(4πFπ)

2
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More on mass deformation

• No spontaneous xSB means the pseudoscalar meson is no longer a 
Goldstone - scales like everything else.  Still the lightest non-singlet meson 
due to QCD inequalities (e.g. Weingarten PRL 51, 1983.)

• To zeroth order all bound states scale with the “induced confinement scale” 
M, but (as in QCD) there should be corrections in fermion mass m:

• Up to corrections, ratios of bound-state masses are independent of m - very 
different from QCD with small m!  (However, can look similar to heavy-quark 
limit...)

MX = CXm1/(1+γ�) +DXm+O(m2)
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Another perspective: “hyperscaling”

• Analyze theory around the fixed point using RG scaling.  Start with a 
correlator for operator H:

CH(t; g,m, µ) =

�
d
3
x�H(x, 0)H†(x, t)� →t→∞ e

−MHt

• RG blocking by factor b:
µ = bµ� m� = bymm CH(t; g,m, µ) = b−2γHCH(t; g�,m�, µ�)

• Now rescale all mass units by b, then pick b = (m’)-1:

CH(t; g,m, µ) = b−2dHCH(tb−1; g�,m�b, µ) = cHF(tm1/ym ;µ)

• So the correlator is a function of the “scaling variable” 

ym = (1 + γm) = (1 + γ�)

x = tm1/(1+γ�)

• Furthermore, we can pick off the behavior of the mass at small m:

MH ∼ cHµm1/(1+γ
�)

• Finally, similar derivations for decay constants and the condensate follow:

FH ∼ m1/(1+γ
�) �ψ̄ψ� ∼ m

3−γ�

1+γ�

(Del Debbio and Zwicky, 1005.2371 and 1009.2894)
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Volume scaling and curve collapse

• In the preceding, finite-size scaling can be considered in the same way, with a 
similar conclusion: the correlator (and thus the mass) becomes a smooth 
function of a single “scaling variable”, 

• Should recover the right mass scaling as L is taken to infinity, so as 

f(x) ∼ x1/(1+γ�)

MH = L−1f(L1+γ
�

m)

x → ∞

• This suggests that hyperscaling can be seen through “curve collapse” - for 
the correct value of gamma, data for any volume and mass will fall on a 
smooth curve (assuming L “large enough” and m “small enough”.)

• We can also try to expand out the volume dependence in correction terms.  
Assuming the corrections are analytic in 1/ML, we have

MX = CXm1/(1+γ�)
�
1 +

zx
m1/(1+γ�)L

�
+DXm+ ...

14



More on the chiral condensate

• The chiral condensate is special - much more sensitive to the ultraviolet than 
other observables.  In particular, on the lattice we pick up UV divergences, 
e.g.

• We can analyze the mass dependence explicitly in terms of running mass:

�ψ̄ψ� = ACm/a2 + ...

p

m(p)

∝
� a−1

M
d4k

[m(k) + Σ(k)]

k2
=

� a−1

M
d4k

�
M(M/k)γ

�

k2
+

M(M/k)2−γ�

k2

�

=

� a−1

M
d4k

�
mk−(γ�+2) +m

3−γ�

1+γ� k(γ
�−4)

�

= (. . . )M3 + (. . . )m
3−γ�

1+γ� + (. . . )m

2

The mass of each physical state X is then set by

the scale M . That is, using Eqs. 1 and 2, MX �
CX m[1/(1+γ�)] [17], where the masses are expressed in

units of Λ, and CX is a dimensionless coefficient not far

above unity. In addition, there are correction terms, the

largest of which in a small-m expansion is of order m.

Keeping only these two terms, we have

MX = CX m[1/(1+γ�)]
+DX m. (3)

Since the explicit breaking of chiral symmetry is of order

M at the induced confinement scale M , there is no ap-

proximate chiral symmetry to be broken spontaneously.

Thus this scaling law applies as well to the pseudoscalar

state. The exponent [1/(1 + γ�)] is universal.

Fodor et al [7] also compute the pseudoscalar decay

constant F and the chiral condensate �ψ̄ψ� as a function

of m. Although F plays no special role in the absence of

spontaneous chiral symmetry breaking, we include it in

our fit, using an expression similar to that for the masses:

F = CFm
[1/(1+γ�)]

+DFm. (4)

The chiral condensate, defined at the cutoff scale Λ,
also vanishes as m → 0. The leading, small-m term is

purely ultraviolet. This is the “contact term,” propor-

tional to mΛ2, independent of the form of the RG run-

ning of the coupling and m(µ). The second, coming from

the RG running of �ψ̄ψ� from M to Λ, is proportional to
M (3−γ�)Λγ�

. Using Eqs. 1 and 2 to express M in terms

of m and Λ, we have

�ψ̄ψ� = ACm+BCm
[(3−γ�)/(1+γ�)]

+ ....., (5)

where now, as in Eqs. 3 and 4, all dimensionful quantities

are expressed in terms of Λ, the inverse lattice spacing.

The coefficients are dimensionless, and m is the lattice

mass.

In addition to these terms, we expect a contribution of

order M3, analogous to the leading-order terms in MX

and F , arising from the induced confinement scale M .

And as with MX and F , there are further corrections,

one of which is of order m3. We therefore take

�ψ̄ψ� = ACm+BCm
[(3−γ�)/(1+γ�)]

+CCm
[3/(1+γ�)]

+DCm
3. (6)

It will turn out that 0 < γ� < 1, so that these four terms

also provide the basis for a small-m expansion.

III. FITTING THE LATTICE DATA

NEGLECTING THE D TERMS

We fit the lattice data of Ref. [7] for the masses of

the scalar, pseudoscalar, vector, axial vector, nucleon,

and parity partner of the nucleon, for the pseudoscalar

decay constant, and for the condensate, first setting the

D-term coefficients DX , DF , and DC to zero. We then
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FIG. 1: Log-log plot showing masses of the pseudoscalar (P),
vector (V), and nucleon (N) states, the pseudoscalar decay
constant (F), and the condensate (C) as a function of m, as
reported in Ref. [7], along with our conformal fit to these
quantities, with the D terms set to zero. The universal slope
of the P, V, N, and F curves provides a good fit to the simu-
lation data.

ask whether the inclusion of the D terms as well as finite-

volume corrections improves the quality of the fit.

The simulations of Ref. [7] were performed using a

tree-level, Symanzik-improved gauge action, with lattice

gauge coupling β ≡ 6/g2 = 2.2. We assume here that this

lattice coupling is consistent with the theory being ap-

proximately described by the infrared-fixed-point value of

the running coupling throughout the range M < µ < Λ.
The simulations were done for fermion masses m =

0.035, 0.0325, 0.030, 0.0275, 0.025, 0.020, 0.015, 0.010
(in lattice units), with lattice volume 243 × 48 for the

heaviest 4 masses, with volume 323 × 64 for m = 0.025,
with volume 403 × 80 for m = 0.020, and with three

volumes ranging up to 483× 96 for m = 0.015 and 0.010.
In the fits reported here, we use the data at the largest

volume available at each m value [7].

In Fig. 1, we show the simulation data for the pseu-

doscalar (P), vector (V), and nucleon (N) masses, for the

pseudoscalar decay condensate (F), and for the conden-

sate (C) as a function of fermion mass m, along with our

conformal fit to these quantities. The common log-log

slope for P, V, N, and F, enforced by the universal scal-

ing exponent 1/(1 + γ�), fits the data points well. The

slope of the condensate curve is determined dominantly

by the leading, linear term of Eq. 6.

To further explore the conformal fit, we report on the

left side of Table I the results of a fit to all the masses, the

pseudoscalar decay constant, and the chiral condensate,

with the D terms set to zero and neglecting finite-volume

effects. For this fit, the anomalous dimension is γ� ≈
0.386± 0.010 and χ2/N = 2.508, with N = 53 degrees of

freedom.

Our (statistical) error analyses here and below do not

take into account correlations of the numerical data,

• From the above, we 
expand the condensate 
as shown to the right:
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• Many studies of this theory 
(originally dubbed “minimal 
walking technicolor”.)  
General consensus: IR 
conformal, anomalous 
dimension small (~< 0.5.)

• Will consider data set of 
Bursa et al., arXiv:1104.4301 
- sample shown on the right.

• Novel feature - glueballs 
lighter than pions!  Predicted 
in mass-deformed weakly-
coupled IRFP (V. Miransky, 
hep-ph/9812350)  True for 
entire mass range?

SU(2) with 2 adjoint fermions

FCNC-mq

FCNC-mq
!

Walking TC
Holdom(1981),  Yamawaki, Bando, 
Matsumoto(1986),  Appelquist, 
Karabali, Wijewardhana(1986), ...

S-parameter
Anderson et al. (2011)
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Figure 6: T versus S for SU(3) TC with one technifermion doublet (the black point)

versus precision data for a one TeV composite Higgs mass (the shaded area).

technifermions in the fundamental representation of the gauge group and for a small

number of techniflavors. The oldest TC models featuring QCD dynamics with three

technicolors and a doublet of electroweak gauged techniflavors deviate a few sigma

from the current precision tests as summarized in Fig. 6. Clearly it is desirable to

reduce the tension between the precision data and a possible dynamical mechanism

underlying the electroweak symmetry breaking. It is possible to imagine different ways

to achieve this goal and some of the earlier attempts have been summarized in [39].

The computation of the S parameter in TC theories requires the knowledge of

nonperturbative dynamics making difficult the precise knowledge of the contribution

to S. For example, it is not clear what is the exact value of the composite Higgs mass

relative to the Fermi scale and, to be on the safe side, one typically takes it to be quite

large, of the order at least of the TeV. However in certain models it may be substantially

lighter due to the intrinsic dynamics. We will discuss the electroweak parameters later

in this chapter.

It is, however, instructive to provide a simple estimate of the contribution to S
which allows to guide model builders. Consider a one-loop exchange of ND doublets

of techniquarks transforming according to the representation RTC of the underlying TC

gauge theory and with dynamically generated mass Σ(0) assumed to be larger than the

weak intermediate gauge bosons masses. Indicating with d(RTC) the dimension of the

techniquark representation, and to leading order in MW/Σ(0) one finds:

Snaive = ND
d(RTC)

6π
. (2.33)

This naive value provides, in general, only a rough estimate of the exact value of S.

However, it is clear from the formula above that, the more TC matter is gauged under
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Overview of this talk

Focus on LSD Collaboration analysis in PRL 106:231601 (2011)

Main result

Dynamical reduction in S
for 6-fermion theory

compared to scaled-up QCD

Focus on lattice methods rather than latest results

Similar methods used in two lattice QCD studies:

JLQCD Collaboration, PRL 101:242001 (2008)

RBC-UKQCD Collaboration, PRD 81:014504 (2010)

First, a brief review of why S remains an important observable

David Schaich (Colorado) S on the Lattice Lattice Meets Experiment 3 / 24

S-parameter
LSD Collaboration(2010)

Models solving 
Yukawa hierarchy are 

complicated.

mH=125 GeV is too light?
Naive expectation: mH ~ O(1 TeV)

Lightest 0++ might be as light as 125 GeV
Del Debbio et al.(2010)
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FIG. 9: The mass of the 0++ glueball in lattice units,
aM0++ , measured at various values of bare quark mass
am0 on a 16× 83 and on a 24× 123 lattice.
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FIG. 10: The mass of the 2++ glueball in lattice units,
aM2++ , measured at various values of bare quark mass
am0 on a 16× 83 and on a 24× 123 lattice.
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FIG. 11: The spectrum of the theory as a function of the PCAC mass am. The mass of the vector is not shown, since on the
scale of the figure this state appears to be degenerate with the PS.

dynamical simulations. The upper bound of this window is simply given by β ≡ 2.25, the value of β for our dynamical
simulations. This is a consequence of the string tension being an increasing function of the bare fermion mass, so an
infinite mass simulation corresponds to a string tension of a pure gauge system at the same β ≡ 2.25.
For each choice of β(q) we measure the string tension and the 0++ and 2++ glueball masses (following e.g. Ref. [73]).

Quenched glueball masses have been interpolated using the ansatz

MG

σ1/2
= A0 +A1a

2σ , (73)

with A0 and A1 respectively the leading (constant) and subleading (O(a2)) coefficients in the extrapolation to the
continuum limit.
On the same gauge configurations, we measure the quenched PS mass and the MV/MPS ratio, for a set of values of

am(q)
0 covering the entire interval of PS masses appearing in the dynamical calculation. We then create an interpolating

function for the central value of the ratio MV/MPS.
To obtain an error on this estimate, we create two other interpolating functions for the maximal and the minimal

value of the quenched estimate MV/MPS set by the statistical error, so that for each choice of the pair (MPS,σ), we
can read the corresponding range of values for MV/MPS. To take into account the indetermination in our estimate
of aMPS and a2σ, we consider a region within one sigma around the central value for those quantities: in this region
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Scaling fit results, SU(2) 2-adjoint

5

in the broken phase. Here we fit the simulation data

of Refs. [18, 19]. In each case the quality of the fit is

indeed poor, as shown in Fig. 3, plotting the χ2
for each

individual fit, as well as the overall χ2
, as function of γ�

.

No clear minimum in χ2
appears for any channel except

the Nf = 6 pseudoscalar mass, where it is at γ�
close to

1. For Nf = 2, a minimum appears at γ� ≈ 1. With

chiral symmetry breaking, MP ∼ m1/2
in lowest order

chiral perturbation theory, corresponding effectively to

γ�
= 1.

It is worth noting that for the SU(3) gauge theory with

2 or 6 fermions in the fundamental representation, the

poorness of the conformal fit should not be due to finite-

volume effects. Within the conformal hypothesis, as we

noted in the case of the 12-fermion theory, a measure of

finite-volume effects is given byML = m1/(1+γ�)L. Here,
the value of γ�

emerging from the poor fit is of order

unity, and L = 32, so ML > 2.3 for the entire range of

m values. Each of the associated masses is larger than

M , so finite-volume effects should be relatively small.

We also note that for the SU(3) gauge theory with

2 fermions in the fundamental representation, a fit us-

ing chiral perturbation theory for a confining and chiral-

breaking theory does work well [20]. For the SU(3) gauge

theory with 6 fermions in the fundamental representa-

tion, a smaller set of fermion masses will be required to

apply chiral perturbation theory [20]. But there is strong

evidence from lattice simulations of the running coupling

that this theory is in the broken phase [1, 2].

A theory for which a conformal fit should work well

is an SU(2) gauge theory with 2 fermions in the adjoint

representation, widely believed to be conformal in the in-

frared [11–14]. We have fit the simulation data of Bursa

et al [10] for the pseudoscalar and vector masses and

pseudoscalar decay constant, assuming as before that M
is the induced confinement scale up to a coefficient of or-

der unity. The data are used only in the range m < 0.2,
in order to ensure that our formulas based on a small-m
expansion can be applied. Figure 4 shows χ2

versus γ�

for each channel, as well as the overall χ2
, based on con-

formal fits as in Eqs. 3 and 4. We find a clear minimum

in χ2
at the best-fit value of γ�

= 0.17±0.05. This value
is roughly consistent with previous determinations of γ�

[11, 14]. Again, our analysis does not include the full

data covariance matrix, so our error may be underesti-

mated and χ2/N may not indicate goodness-of-fit. The

relatively large contribution of the decay constant to the

overall χ2
may be due to underestimation of statistical

errors, as the data as shown in Ref. [10] are difficult

to describe with any smooth function of m. Addition

of finite-volume corrections as described in Sec. IV sup-

ports this conclusion, failing to improve the quality of

the decay constant fit (but improving fits to the masses.)

SU(2), Nf = 2
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FIG. 4: For the SU(2) theory with two fermions in the adjoint
representation, individual contributions to total χ2 from each
channel, for a range of fixed values 0 < γ� < 1. Total number
of degrees of freedom is 14 (6 data points per channel). All
D terms are fixed to zero. Fits are to the SU(2) two-flavor
adjoint data of Bursa et al [10], with the restriction m < 0.2.

VI. CONCLUDING COMMENTS

We have argued that the simulation data of Ref. [7]

are consistent with the hypothesis that an SU(3) gauge

theory with 12 massless fermions in the fundamental rep-

resentation is conformal in the infrared. This conclusion

is based on a simple fit to the data, in particular assum-

ing that the gauge coupling can be approximated by its

infrared-fixed-point value g� out to the UV cutoff Λ (the

inverse lattice spacing). The mass anomalous dimension

γ is then set to its fixed-point value γ�
.

A global fit including finite-volume and higher-order

corrections yields χ2/N = 0.944 with N = 44. We have

argued that the fit describes a small-m expansion cov-

ering the range of fermion masses used in the simula-

tions, allowing a controlled extrapolation to m = 0. It

leads to a mass anomalous dimension of γ�
= 0.403(13).

To compare directly with the broken-symmetry fit of

Ref. [7], we also fit to a subset of four channels, finding

χ2/N = 1.10 with N = 20 as compared to the reported

broken-symmetry value of χ2/N = 1.22 with N = 26.

Although not described in detail here, we have also

used the infrared-conformal hypothesis to fit the simula-

tion data of Ref. [7] for the static quark potential. Since

confinement is induced at scale M , an effective string

tension σ ∝ M2 ∝ m[2/(1+γ�)]
can be determined from

the data assuming that string breaking has not yet set in.

The fit works well, with a value of γ�
in good agreement

with the other fits and an acceptable χ2
.

We stress that we have not argued conclusively that the

simulation data of Ref. [7] demonstrates that the SU(3)

theory with 12 massless fermions is infrared conformal.

The simulation data can be described with similar fit

quality by the chirally broken functional forms used in

[7], with a slope and intercept. But the large value of the

slope term compared to the intercept, for the existing

• With gamma fixed, no non-
linearity in the other 
parameters, can fit easily

• Showing chi-squared 
contours in gamma makes 
it easy to split by channel, 
read off best-fit point and 
error on gamma

• P,V channels point to 
gamma ~ 0.2, in agreement 
with other determinations.  
F likely has underestimated 
errors.
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A deliberately bad example

• Lack of minimum in most 
channels (except pion), 
enormous overall chi-squared

• Can get spurious minima, 
too...tends to favor large 
gamma, poor consistency
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A deliberately bad example

• Lack of minimum in most 
channels (except pion), 
enormous overall chi-squared

• Can get spurious minima, 
too...tends to favor large 
gamma, poor consistency
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SU(3) with 12 fundamental fermions

• We reanalyze the extensive data 
set of Fodor et al (above), 
coming to a different conclusion

• Fodor et al. consider mass-
deformed fits in their paper; 
main difference with us is over 
correction terms, relative 
importance of channels

2

The mass of each physical state X is then set by

the scale M . That is, using Eqs. 1 and 2, MX �
CX m[1/(1+γ�)] [17], where the masses are expressed in

units of Λ, and CX is a dimensionless coefficient not far

above unity. In addition, there are correction terms, the

largest of which in a small-m expansion is of order m.

Keeping only these two terms, we have

MX = CX m[1/(1+γ�)]
+DX m. (3)

Since the explicit breaking of chiral symmetry is of order

M at the induced confinement scale M , there is no ap-

proximate chiral symmetry to be broken spontaneously.

Thus this scaling law applies as well to the pseudoscalar

state. The exponent [1/(1 + γ�)] is universal.

Fodor et al [7] also compute the pseudoscalar decay

constant F and the chiral condensate �ψ̄ψ� as a function

of m. Although F plays no special role in the absence of

spontaneous chiral symmetry breaking, we include it in

our fit, using an expression similar to that for the masses:

F = CFm
[1/(1+γ�)]

+DFm. (4)

The chiral condensate, defined at the cutoff scale Λ,
also vanishes as m → 0. The leading, small-m term is

purely ultraviolet. This is the “contact term,” propor-

tional to mΛ2, independent of the form of the RG run-

ning of the coupling and m(µ). The second, coming from

the RG running of �ψ̄ψ� from M to Λ, is proportional to
M (3−γ�)Λγ�

. Using Eqs. 1 and 2 to express M in terms

of m and Λ, we have

�ψ̄ψ� = ACm+BCm
[(3−γ�)/(1+γ�)]

+ ....., (5)

where now, as in Eqs. 3 and 4, all dimensionful quantities

are expressed in terms of Λ, the inverse lattice spacing.

The coefficients are dimensionless, and m is the lattice

mass.

In addition to these terms, we expect a contribution of

order M3, analogous to the leading-order terms in MX

and F , arising from the induced confinement scale M .

And as with MX and F , there are further corrections,

one of which is of order m3. We therefore take

�ψ̄ψ� = ACm+BCm
[(3−γ�)/(1+γ�)]

+CCm
[3/(1+γ�)]

+DCm
3. (6)

It will turn out that 0 < γ� < 1, so that these four terms

also provide the basis for a small-m expansion.

III. FITTING THE LATTICE DATA

NEGLECTING THE D TERMS

We fit the lattice data of Ref. [7] for the masses of

the scalar, pseudoscalar, vector, axial vector, nucleon,

and parity partner of the nucleon, for the pseudoscalar

decay constant, and for the condensate, first setting the

D-term coefficients DX , DF , and DC to zero. We then
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FIG. 1: Log-log plot showing masses of the pseudoscalar
(P), vector (V), and nucleon (N) states, the pseudoscalar de-
cay constant (F), and the condensate (C) as a function of
m, as reported in Ref. [7], along with our conformal fit to
these quantities, with the D terms set to zero. The universal
slope of the P, V, N, and F curves provides a good fit to the
simulation data.

ask whether the inclusion of the D terms as well as finite-

volume corrections improves the quality of the fit.

The simulations of Ref. [7] were performed using a

tree-level, Symanzik-improved gauge action, with lattice

gauge coupling β ≡ 6/g2 = 2.2. We assume here that this

lattice coupling is consistent with the theory being ap-

proximately described by the infrared-fixed-point value of

the running coupling throughout the range M < µ < Λ.
The simulations were done for fermion masses m =

0.035, 0.0325, 0.030, 0.0275, 0.025, 0.020, 0.015, 0.010
(in lattice units), with lattice volume 243 × 48 for the

heaviest 4 masses, with volume 323 × 64 for m = 0.025,
with volume 403 × 80 for m = 0.020, and with three

volumes ranging up to 483× 96 for m = 0.015 and 0.010.
In the fits reported here, we use the data at the largest

volume available at each m value [7].

In Fig. 1, we show the simulation data for the pseu-

doscalar (P), vector (V), and nucleon (N) masses, for the

pseudoscalar decay condensate (F), and for the conden-

sate (C) as a function of fermion mass m, along with our

conformal fit to these quantities. The common log-log

slope for P, V, N, and F, enforced by the universal scal-

ing exponent 1/(1 + γ�), fits the data points well. The

slope of the condensate curve is determined dominantly

by the leading, linear term of Eq. 6.

To further explore the conformal fit, we report on the

left side of Table I the results of a fit to all the masses, the

pseudoscalar decay constant, and the chiral condensate,

with the D terms set to zero and neglecting finite-volume

effects. For this fit, the anomalous dimension is γ� ≈
0.386± 0.010 and χ2/N = 2.508, with N = 53 degrees of

freedom.

Our (statistical) error analyses here and below do not

take into account correlations of the numerical data,

Twelve massless flavors and three colors below the conformal window
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Abstract

We report new results for a frequently discussed gauge theory with twelve fermion flavors in the fundamental representation of
the SU(3) color gauge group. The model, controversial with respect to its conformality, is important in non-perturbative studies
searching for a viable composite Higgs mechanism Beyond the Standard Model (BSM). To resolve the controversy, we subject the
model to opposite hypotheses inside and outside of the conformal window. In the first hypothesis we test chiral symmetry breaking
(χSB) with its Goldstone spectrum, Fπ, the χSB condensate, and several composite hadron states as the fermion mass is varied
in a limited range with our best effort to control finite volume effects and extrapolation to the massless chiral limit. Supporting
results for χSB from the running coupling based on the force between static sources and some preliminary evidence for the finite
temperature transition are also presented. In the second test for the alternate hypothesis we probe conformal behavior driven by
a single anomalous mass dimension under the assumption of unbroken chiral symmetry. Our results show a very low level of
confidence in the conformal scenario. Staggered lattice fermions with stout-suppressed taste breaking are used throughout the
simulations.

Key words: lattice simulations, electroweak sector, technicolor, conformal

1. Introduction

New physics at the Large Hadron Collider could be discov-
ered in the form of some new strongly-interacting gauge theory
with a composite Higgs mechanism, an idea which was out-
side experimental reach when it was first introduced as an at-
tractive BSM scenario [1–9]. The original framework has been
expanded by new explorations of the multi-dimensional theory
space of nearly conformal gauge theories [10–17] where sys-
tematic non-perturbative lattice studies play a very important
role. New experimental results at the Tevatron [18], boldly in-
terpreted as Technicolor [19], will further stimulate lattice ef-
forts to provide a well-controlled theoretical framework. Inter-
esting models require the theory to be very close to, but below,
the conformal window, with a running coupling which is al-
most constant over a large energy range. The non-perturbative
knowledge of the critical flavor N

crit

f
separating the two phases

is essential and this has generated much interest and many new
lattice studies [20–44].

We report new studies of an important and frequently dis-
cussed gauge theory with twelve fermion flavors in the funda-
mental representation of the SU(3) color gauge group. With
Nf = 12 being close to the critical flavor number, the model
has attracted a great deal of attention in the lattice community

∗Corresponding author
Email address: jkuti@ucsd.edu (Julius Kuti)

and off-lattice as well. To establish the chiral properties of a
gauge theory close to the conformal window is notoriously dif-
ficult. If the chiral symmetry is broken, the fundamental param-
eter F of the chiral Lagrangian has to be small in lattice units a

to control cut-off effects. Since the chiral expansion has terms
with powers of Nf M

2
π/16π2

F
2, reaching the chiral regime with

a large number of fermion flavors is particularly difficult. The
range of aMπ values where leading chiral logs can be identified
unambiguously will require simulations in very large volumes
which are not in the scope of this study. We will make a case
in this report that qualitatively different expectations inside and
outside the conformal window allow tests of the two mutually
exclusive hypotheses without reaching down to the chiral logs
at very small pion masses.

Below the conformal window, chiral symmetry is broken at
zero fermion mass with a gap in the composite hadron spectrum
except for the associated massless Goldstone multiplet. The an-
alytic form of the chiral Lagrangian as a function of the fermion
mass can be used to detect chiral log corrections, or to differ-
entiate from conformal exponents in the transitional region be-
fore the chiral logs are reached at low enough Goldstone pion
masses. Approximations to gauge theories with χSB, like their
effective Nambu-Jona-Lasinio description in the large N limit,
are consistent with this analysis. In sharp contrast, the spec-
trum inside the conformal window is gapless in all channels in
the chiral limit and the scale dependence of physical quantities,
like the fermion mass dependence of composite operators and

Preprint submitted to Physics Letters B April 18, 2011
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Scaling fit results, SU(3) Nf=12
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Scaling fit results, SU(3) Nf=12
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3

Obs. DX = 0 DF �= 0, zX �= 0

γ� 0.3858(98) 0.403(13)

CP 4.445(83) 4.267(85) zP 0.209(64)

CS 5.99(14) 5.75(14) zS 0.63(45)

CV 5.26(10) 5.05(10) zV 0.319(88)

CA 6.68(15) 6.41(15) zA 0.50(30)

CN 8.04(17) 7.70(17) zN 0.35(18)

CN� 8.06(17) 7.73(17) zN� 0.49(24)

CF 0.692(13) 0.455(39) zF 0.61(27)

DF — 0.61(10)

AC 13.898(28) 13.926(31) zC -0.036(43)

BC -50.8(5.5) -42.2(4.8)

CC 94(11) 79.0(9.5)

χ2/dof 133/53 42/44

TABLE I: For the SU(3) theory with 12 fermions in the fun-
damental representation, best-fit results to the data of Ref.
[7], for our global conformal fit as described in the text. On
the left-hand side, all the D terms are set to zero, and finite-
volume corrections are neglected. On the right-hand side, DF

[Eq. 4] is included, as well as finite-volume corrections, with
zX as explained in Sec. IV. The letters S, P , V , A, N , and N�

correspond respectively to the scalar, the pseudoscalar, the
vector, the axial vector, the nucleon, and the parity partner
of the nucleon. F refers to the pseudoscalar decay constant
and C to the condensate. For each quantity, there are 8 data
points, one for each m value. The fits do not take into ac-
count possible correlations between different observables, as
discussed in the text.

which would require access to the full simulation data

set. As a result, our errors may be underestimated and

χ2/N may not directly indicate goodness-of-fit. While

this value of χ2/N is somewhat large, the fit reported so

far is a very simple one. We have not yet included the

D terms of Eqs. 3, 4, and 6, and we have not taken

into account possible finite-volume corrections. From

the fit reported so far, the latter can be anticipated to

be relatively small. The product ML lies between 1.73
and 2.23, and finite-volume corrections should be small

if MXL ∝ ML � 1. Inspection of the best-fit CX values

in the left side of Table I indicates that this is the case.

In the next section, we will include finite-volume effects
as well as the D terms. The result, reported in the right-

hand side of Table I, is quite encouraging. The finite-

volume corrections, while not insignificant, are indeed

relatively small, and the value of γ� changes very little.

Furthermore, the fit improves, with χ2/N = 0.944 and

N = 44.

Before including the higher-order corrections, we ex-

amine the consistency of the conformal fit described

above by performing separate fits to each mass, as well as

to F and the condensate. We fix a value of γ� in the range

0 < γ� < 1, and plot the χ2 for each fit as a function of

γ� in this range. The result is shown in Fig. 2, along with

the sum of the individual χ2’s. The internal consistency
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FIG. 2: For the SU(3) theory with 12 fermions in the fun-
damental representation, individual contributions to total χ2

from each channel, for a range of fixed values 0 < γ� < 1.
Here, all D terms are set to zero. Fits are to the Nf = 12
data of Ref. [7]. Parity-odd states (P,A,N�) are shown as
dashed curves in the same color as their parity partners. The
black curve is the total χ2.

is evident, with the minimum χ2 for each mass occurring

at a similar value of γ�, and the minimum for the pseu-

doscalar decay constant at a value only slightly smaller.

The condensate makes only a small contribution to the

overall χ2. The minimum of the black curve corresponds

to the total χ2 of the left fit of Table I.

IV. HIGHER-ORDER TERMS AND
FINITE-VOLUME EFFECTS

We next comment on the role of the D terms in Eqs.

3, 4 and 6, inserting one D term at a time and repeating

the above global fit. At the same time, we consider the

effect of finite-volume corrections. We incorporate the

latter by modifying Eqs. 3 and 4 to include first-order

corrections in an expansion in 1/ML, continuing to in-

clude the correction linear in the short-distance mass m.

We thus take MX = CX M [1 + zX/ML] +DX m, with

M = m[1/(1+γ�)], and similarly for F . For the conden-

sate, we simply replace M = m[1/(1+γ�)] in the second

and third terms of Eq. 6 by M [1 + zC/ML]. While this

modification is not claimed to be unique, it is physically

sensible. Furthermore, the finite-volume corrections are

found to be insignificant for the condensate, so that the

overall fit does not depend sensitively on the detailed

form of this correction term.

For the data set of Ref. [7], the inclusion of the D

term in any one of the masses, with or without the finite-

volume corrections, does not improve the quality of the

fit. The value of each DX is consistent with 0, with

errors such that the DX [next-to-leading order (NLO)]

term is small compared to the CX [leading order (LO)]

term for the full range of m values. The inclusion of

the DC (NNNLO) term in the condensate also does not

improve the quality of the fit, with DC consistent with

(no D or z terms here)

MX = CXm1/(1+γ�)
�
1 +

zx
m1/(1+γ�)L

�
+DXm+ ...
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A closer look at the decay constant

• F favors a small minimum compared to other channels...full fit likes a larger 
mass correction D-term.  Some hint of this if we drop the heavier points:
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Other analyses

• DeGrand also re-
analyzed the same data 
set using the “curve 
collapse” method, also 
finds 

• New paper from Fodor, 
Kuti et al. shows 
additional data, similar 
fits, concludes that 
conformal fits don’t 
work.  Most problematic 
channel is once again 
FP...D terms?  Or 
something we don’t 
understand?

FIG. 2: Plots of ξL/L vs mqLym with ξL = 1/mπ for four choices of ym: (a) ym = 1.0, (b)
ym = 1.2, (c) ym = 1.4 (d) ym = 1.6. Plotting symbols are for different spatial sizes, squares,

L = 48; diamonds, L = 40; crosses, L = 32; octagons, L = 24.

eters is ym = 1.35 or γm = 0.35, with unfortunately unimpressively large uncertainty. Of
course, this is an analysis for which the data set was not designed. It could be improved by
more mass values at all chosen volumes.

The small γm measured here resembles results from other nearly-conformal theories ob-
served to date [15, 17–19].

Notice, finally, that this is far from being a complete story. For the fit itself, one could
be concerned with, and include, non-scaling contributions. (See Ref. [20] which does this.
The authors specified their F (x) rather than letting the data do so.)

More importantly, the ym which comes out is very likely not to be an actual scaling
exponent. A few moment’s reflection shows why: Because the gauge coupling runs so slowly,
simulations done over a small range of volumes cannot flow to a fixed point (if it exists)
unless they begin very close to it.

That this is expected, is easy to see from the one-loop beta function result, where under

5

(from T. DeGrand, arXiv:1109.1237)

γ = 0.0 γ = 0.2

γ = 0.4 γ = 0.6

γ� ∼ 0.4
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SU(3) with 10 fundamental fermions

• On to 10 flavors - probably near the edge of the conformal window for SU(3), 
one way or another.

• One other study in addition to us, running coupling + direct anomalous 
dimension.  Sees strong fixed point and gamma near 1!

!(") of 10-flavor QCD
Hayakawa, Ishikawa, Osaki, Takeda, Uno, NY, PRD(2011) and work in progress

Preliminary
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Determination of the running coupling in Nf =6 two-color QCD with Plaquette gauge and Wilson quark actions · · · March 9, 2012

2.1 Discrete Beta function

I introduce the discrete β function (DBF) [9]

Blat(u(g2
0), l1, l2) =

1

g2(g2
0, l2)

−
1

g2(g2
0, l1)

, (9)

u = g2(g2
0, l1), (10)

s =
l2
l1

. (11)

Here I slightly modified the original DBF by an overall constant and the definition of argument. The contin-
uum counterpart is given by

BSF(u, s) =
1

g2
SF(u, s)

−
1

u
. (12)

At the leading order of continuum perturbation theory, the DBF is scheme-independent and given by

Bleading(u, s) = −b1 ln(s) =







−0.012145120 for s = 4/3
−0.017117585 for s = 3/2
−0.029262705 for s = 2

, (13)

independent of u, where Nc = 2 and Nf = 6 and g−2
SF (L) = b1 ln(L0/L) is used. If one goes to the next-

leading order, the u dependence comes in. One can include the higher order effects numerically. Using the
DBF defined in eq. (11), one can write

1

g2(u, s)
=

1 + u B(u, s)

u
, (14)

where the notation is simplified. Using the numerical values of p1 given in eq.(2), the lattice DBF values in
the small u limit can be calculated as

Blat(u, l1, l2) = p1(l1) − p1(l2)) =











































































−0.0084127199 for (l1, l2) = (6, 8)
−0.0070582401 for (l1, l2) = (12, 16)
−0.0076604041 for (l1, l2) = (18, 24)

−0.0100876671 for (l1, l2) = (8, 12)
−0.0100474271 for (l1, l2) = (12, 18)
−0.0106495911 for (l1, l2) = (16, 24)

−0.0185003871 for (l1, l2) = (6, 12)
−0.0171459072 for (l1, l2) = (8, 16)
−0.0177078312 for (l1, l2) = (12, 24)

. (15)

That was numerically checked.
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(IBM Blue Gene/L 
supercomputer at LLNL)

(Cray XT5 “Kraken” at 
Oak Ridge)

(Computing cluster “7N” 
at JLab)

Results to be shown are 
state-of-the-art for lattice 
simulation - O(100 million) 
core-hours for full program

Many thanks to the computing 
centers and funding agencies 
(DOE through USQCD and 
LLNL, NSF through XSEDE)
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Simulation details

• Iwasaki gauge action + 
domain-wall fermions, fermion 
masses from mf=0.005 to 
mf=0.03, one volume (323x64).

• Residual chiral symmetry 
breaking reasonably small, 
mres~0.002.  All chiral 
extrapolations in m=mf+mres.

• To address autocorrelation, 
start every gauge ensemble 
from both “ordered” (free) and 
“disordered” (random).

Domain wall fermions

Form a fifth dimension from Ls copies of the 4d gauge fields

Exact chiral symmetry at finite lattice spacing in the limit Ls →∞
At finite Ls, “residual mass” mres � mf ; m = mf + mres
323×64 with Ls = 16: significant computational expense

mres ≈ 2.6× 10−5 [2f]; 82× 10−5 [6f]; 170× 10−5 [10f]

David Schaich (Colorado) Lattice Strong Dynamics for the LHC SCGT12Mini (KMI Nagoya) 4 / 22

3

mf start mI τ δτ # trajs.

0.005 ord 1310

0.005 mix 910

0.010 ord 0.1 1 0.0667 1370

0.010 dis 0.1 1 0.0667 1260

0.015 ord 1200

0.015 dis 0.1 1 0.0667 1450

0.020 ord 1240

0.020 dis 1220

0.025 ord 0.1 1 0.0625 1250

0.025 dis 0.1 1 0.0667 1480

0.030 ord 0.1 1 0.0667 1410

0.030 dis 0.1 1 0.0667 1220

TABLE I: Simulation parameters.

III. DETERMINATION OF MESON MASSES

AND DECAY CONSTANTS

Wemeasured meson two-point correlators every 10 MD

trajectories with both point (p) and gauge-fixed wall (w)

sources. The sinks are also constructed both ways. Hence

for each hadronic operator, we have four different types of
two-point correlator, denoted as Cwp(t), Cww(t), Cpw(t)

and Cpp(t), where the subscripts refer to different sink-

source smearing combinations. To further increase statis-

tics we also use two different source locations, t0 = 0 and

t0 = 32. In the analysis below we will, in each case,

first average the correlators from the two different source
locations, then perform a simultanous fit to these aver-

aged correlators with all combinations of source and sink

smearings, unless otherwise noted. While a correlation

matrix between these different source-sink combinations

will not be calculated due to our limited statistics, the

simultaneous fit will be performed using a jackknife pro-

cedure.

In this paper we focus on the pseudoscalar meson (P ),

the vector meson (V ) and the axial vector meson (A).

The pseudoscalar meson mass is characteristic of spon-

taneous chiral symmetry breaking (or the lack of), and

the vector and axial vector mesons may become more

parity-doubled (or degenerate) as the theory approaches

the conformal window. The masses of these states are de-

termined from fits to the two-point correlator C(t) with

the form

C(t) = A

�
e
−Mt

+ e
−M(T−t)

�
, (2)

where C(t) = �
�

�x ψ(�x, t)Γψ(�x, t)ψ(�0, t0)Γψ(�0, t0)� is the
zero-momentum meson two-point correlation functions.

Γ = γ5 for the pseudoscalar, Γ = γi (i = 1, 2, 3) for the

vector, and Γ = γiγ5 (i = 1, 2, 3) for the axial-vector

meson.

Since the pseudoscalar meson couples to both the ψ̄γ5ψ
and ψ̄γ4γ5ψ channels, we simultaneously fit the four

pseudoscalar and four axialvector-t correlators from dif-

ferent source-sink combinations to obtain a common mass

and eight amplitudes in a way similar to Ref. [11]. For the

vector or the axial vector meson, we first average over the

three polarizations to form a single correlator, and then

perform similar simultaneous fits to obtain a common

mass and an amplitude for each of the four source-sink

combinations.

It is well known that different source-sink combina-

tions may have different contaminations from the excited

states. We choose different fit ranges for different corre-
lators so that the available data can be maximally used

while the excited-state contaminations are kept to min-

imum. To do this, we look at the effective masses of

the individual correlators and choose the fit ranges for

the correlators based on the onset of the plateaus of the

effective masses. Further details for our choice of the

fit ranges and the representative effective mass plots are

presented in the Appendix.

TODO: show some effective mass and fit range

plots in the Appendix

The flavor non-singlet decay constant are defined as

�0 |Aa
4 |πa� = −i

√
2FPMP · ZA (3)

for the pseudo scalar,

�0 |V a
i | ρa� = −i

√
2FV MV �i · ZV , i = 1, 2, 3 (4)

for the vector, and

�0 |Aa
i | aa1� = −i

√
2FAMA�i · ZA, i = 1, 2, 3 (5)

for the axial vector, where Aa
µ(x) and V a

µ (x) are the local

axial vector and vector currents, respectively. The above

definitions are consistent with the conventions in [16],

and will give a QCD pion decay constant of about 93

MeV. ZA and ZV are the axial vector and vector current

renormalization constants for DWF, respectively. Chiral

symmetry guarantees that ZA = ZV . For DWF, this

relation is true up to O(a2). Thus we use ZA determined

from our simulations to calculate all the decay constants.

Partially conserved axial current (PCAC) relation also

allows us to determine the pseudo scalar decay constant

from the pseudo scalar matrix element [13]. For DWF,

the relation

∂µAa
µ(x) = 2(mf +mres)P

a
(x), (6)

where Aµ(x) is the (partially conserved) axial vector cur-

rent, indicates that we can substitute the axial vector

matrix element in Eq. (3) with the pseudo scalar matrix

element, giving rise to

2(mf +mres) �0 |P a|πa� = −i
√
2FPM

2
P . (7)

The amplitudes we obtain from the simultaneous fits

allow us to determine the decay constants in several dif-

ferent ways, as detailed in the Appendix. For each en-

semble, we chose to take the jackknife average of these

different determinations as our final result.

The results for the meson masses and decay constants

for each ensemble are presented in Table II.
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Initial states and data combination

• Persistent ord/dis difference (right) treated 
as systematic effect, averaging procedure 
is used.  Conservative error estimate 
including both statistical error and 
“spread” between two ensembles:

• U and G are uniform/Gaussian pdfs, 
respectively.  Width of uniform estimated 
from (ord-dis) fractional difference, avg 
over all ensembles.

• m=0.005 excluded from analysis 
(systematic differences too large, plus 
finite-volume concerns.)

3
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0.003084
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ordered-start

FIG. 1: The results for the chiral condensate as we change
the thermalization cut. The blue circles are for the ensemble
with a disordered start, and the red squares are for the en-
semble with an ordered start. From top to bottom, the panels
show results for mf = 0.005, 0.010, 0.015, 0.020, 0.025, 0.030,
respectively. The dashed line indicates where we took the
thermalization cut for our final analysis.

continuum, the global topological charge at a given gauge

configuration is defined as

Q =
g2

16π2

�
d4xGµν(x)G̃µν(x), (2)

where Gµν(x) and G̃µν(x) are the gluon field strength

tensor and its dual, respectively. In our simulations, the

ordered-start ensembles start with Q = 0 and stay in this

sector throughout the evolution, while the disordered en-

sembles have fixed non-zero topological charges after the

first few relaxation trajectories. For an ensemble with a

net topological charge �|Q|�, the chiral condensate �ψψ�Q

gets an additional contribution

�ψψ�Q = �ψψ�0 +
1

12V

�|Q|�
m

, (3)

where �ψψ�0 is the chiral condensate with zero net topo-

logical charge and V the lattice volume. However, we

find that the difference for the chiral condensate seen in

Fig. 1 cannot be entirely attributed to the fixed topologi-

cal charges from different starts. In Table II we show the

chiral condensate as calculated from our simulations and

the contributions from the non-zero topological charge

according to Eq.(3). While for most masses the shift from

the non-zero topological charge moves the chiral conden-

sate in the right direction, there are some cases where

the topological charge contribution does not explain the

discrepancy, notably for mf = 0.015 and 0.020. Thus

we suspect that the statistical errors we obtain from the

existing ensembles may be underestimated, and do not

reflect the possible long-range autocorrelations. Given

how slow the topological charges evolve in these ensem-

bles, we will not be surprised if the autocorrelation times

extend well beyond the scope of our available data.

need the full topological charge history

mf start �ψψ� �|Q|� �ψψ�D − �ψψ�O 1
12V

�Q�
m

0.005 ord 0.0006634(9) 0 - 0

0.005 mix 0.0006764(6) 3 1.30(11)× 10−5 1.78× 10−5

0.010 ord 0.0011480(4) 0 - 0

0.010 dis 0.0011522(5) 1 0.42(6)× 10−5 0.34× 10−5

0.015 ord 0.0016372(10) 0 - 0

0.015 dis 0.0016452(5) 1 0.80(11)× 10−5 0.24× 10−5

0.020 ord 0.0021245(8) 0 - 0

0.020 dis 0.0021369(3) 12 1.24(8)× 10−5 2.20× 10−5

0.025 ord 0.0026061(4)

0.025 dis 0.0026236(6)

0.030 ord 0.0030876(5) 0 - 0

0.030 dis 0.0030921(6) 9 0.45(8)× 10−5 1.13× 10−5

TABLE II:

III. DETERMINATION OF MESON MASSES

AND DECAY CONSTANTS

We measured meson two-point correlators every 10 MD

trajectories with both point (p) and gauge-fixed wall (w)

sources. The sinks are also constructed both ways. Hence

for each hadronic operator, we have four different types of

two-point correlator, denoted as Cwp(t), Cww(t), Cpw(t)
and Cpp(t), where the subscripts refer to different sink-

source smearing combinations. To further increase statis-

tics we also use two different source locations, t0 = 0 and

t0 = 32. In the analysis below we will, in each case,

(chiral condensate)

whether this systematic shift should be applied entirely to µ1, or to µ2, or somewhere in

between. The appropriate statistical distribution for our knowledge of the bias is therefore

uniform and centered at µ̄ = (µ1 + µ2)/2. We take the width of the distribution to be 2δ,

with δ to be determined shortly. The appropriate combined probability distribution is then

obtained by convolving the bias correction with the sample distributions:

p(x) ∝
� ∞

−∞
U(µ|µ̄, δ) [G(x|µ, σ1) +G(x|µ, σ2)] , (1)

with U and G indicating the uniform and Gaussian probability density functions, respec-

tively. Carrying out the integral and normalizing to one, I find that

pc(x) =
1

4δ

� µ̄+δ

µ̄−δ

�
exp

�
−(x− µ)2

2σ2
1

�
+ exp

�
−(x− µ)2

2σ2
2

��
(2)

=
1

8δ

�
erf

�
x− µ̄+ δ√

2σ1

�
− erf

�
x− µ̄− δ√

2σ1

�
+ (σ1 ↔ σ2)

�
. (3)

The combined-distribution mean is thus given by

µc =

� ∞

−∞
dx xpc(x) (4)

=
1

4δ

� µ̄+δ

µ̄−δ

� ∞

−∞
dx x

�
exp

�
−(x− µ)2

2σ2
1

�
+ exp

�
−(x− µ)2

2σ2
2

��
(5)

=
1

4δ

� µ̄+δ

µ̄−δ

[µ+ µ] (6)

= µ̄ (7)

as it should be. For the variance, I find similarly that

σ2
c =

1

4δ

� µ̄+δ

µ̄−δ

� ∞

−∞
dx (x− µ̄)2

�
exp

�
−(x− µ)2

2σ2
1

�
+ exp

�
−(x− µ)2

2σ2
2

��
(8)

=
1

4δ

� µ̄+δ

µ̄−δ

dµ
�
σ2
1 + σ2

2 + 2(µ− µ̄)2
�

(9)

=
1

2
(σ2

1 + σ2
2) +

1

3
δ2. (10)

We now need to determine an appropriate estimate for the distribution width, δ. For a

uniform probability distribution, the best estimate of this quantity from a sample is given

by the largest observed difference between two sample values. For a given ensemble and

observable, we have only the difference between ordered and disordered sample means, which

provides a single estimate of δ. This is clearly not good enough, since a single estimate drawn

4
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Finite-volume effects at Nf=10

• We only have one useful 
simulation volume, so we have 
to be extra-careful about finite-
volume effects

• “Edinburgh plot” (left) provides a 
way to check - FV corrections 
increase mass but decrease F, 
so send all points up and right 
on this plot

• 2, 6 flavors show expected 
scaling, i.e. MP/FP becoming 
small.  10 has both ratios 
constant - until m=0.015 and 
(especially) m=0.010

5 6 7 8 9 10 11
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16
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20

22

MP �FP

M
N
�F P

m → 0

Nf = 2
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Nf = 10
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Scaling fit results, Nf=10

S
V

N
F

C
total

Nf = 10
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10
20
50
100

Γ�

Χ2

4

Obs. mf ≥ 0.010 mf ≥ 0.015 mf ≥ 0.020

γ� 1.69(16) 1.10(17) 1.35(47)

[68% CI] [1.54,1.86] [0.95,1.27] [1.06,1.73]

[95% CI] [1.40,2.06] [0.82,1.46] [0.83,2.27]

CP 0.98(9) 1.44(21) 1.21(37)

CV 1.17(10) 1.70(25) 1.42(44)

CA 1.43(13) 2.14(32) 1.79(56)

CN 1.75(16) 2.53(37) 2.10(65)

CN� 2.23(25) 3.35(55) 2.87(92)

CFP 0.121(12) 0.190(28) 0.164(51)

CFV 0.165(15) 0.238(35) 0.195(60)

CFA 0.136(13) 0.192(28) 0.154(48)

χ2/d.o.f. 69/31 14/23 3.1/15

TABLE I. Global fit results for the conformal hypothesis of

Eqs. (1) and (2), based on combined ordered/disordered data as

described in the text. The labels P, V,A,N,N�
correspond to the

pseudoscalar, vector, axial-vector, nucleon and nucleon-prime,

respectively. Decay constants for channel X are denoted by FX.

Errors shown on all quantities are purely statistical, and ignore

correlations between observables. For γ�, two-sided 68% and

95% confidence intervals are also shown. The mf ≥ 0.010 fit

(left column) has significantly worse χ2/d.o.f., possibly due to

the presence of finite-volume effects.

ipated for a theory with Nf at the edge of the conformal

window [25–27].

To better understand our fit results, we show in Fig. 2

scans over χ2
as a function of γ�

, broken up for each indi-

vidual observable included in the mf ≥ 0.015 fit. Several

of the observables show an individual minimum in χ2
com-

patible with the global best-fit value γ� ≈ 1.10. The chiral

condensate (shown in red) has no clear minimum, but it

contributes very little to overall χ2
, so we omit it from the

global fits in Table I. The global fit with the condensate in-

cluded is not significantly different, but exhibits very strong

correlations between the parameters γ�
, AC and BC ; this

behavior is expected for γ�
near 1, for which the AC and

BC terms in Eq. (2) are nearly degenerate.

As is evident from Fig. 2, the distribution of χ2/d.o.f.

as a function of γ�
is not symmetric about the minimum.

We estimate a two-sided 68% (95%) confidence interval

on γ�
directly, varying by ∆χ2 = 1 (∆χ2 = 4) about the

minimum of the χ2
contour shown in Fig. 2. Results for

each mass range are shown in Table I. In all cases we find

γ� � 0.8 at two sigma.

A similar plot using our Nf = 2 results is shown for

comparison. As expected the Nf = 2 theory shows gen-

erally very poor power-law fits for any γ� < 2, with the

exception of the pseudoscalar mass (green, dashed), which

scales as M2
P ∼ m in accordance with chiral perturbation

theory.

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
0.0

0.1

0.2

0.3

0.4

0.5

m

M
P
,V
,A

FIG. 3. Simulation results for the pseudoscalar mass (circles),

vector mass (squares), and axial-vector mass (triangles). Error

bars on the points are estimated using the combination method

described in the text. Two fit types are compared: linear MV ∼
aV + bV m (red), and power law MV ∼ m1/2

(blue). The power-

law fits correspond to a mass-deformed conformal theory with

γ� = 1. Only observable values with mf ≥ 0.015 (filled sym-

bols) are used in the fits.

Chirally Broken Hypothesis Despite the quality of fits

obtained under the infrared-conformal hypothesis, it re-

mains possible that the Nf = 10 theory is chirally broken.

A rigorous test of this possibility would involve chiral per-

turbation theory to extrapolate to m = 0. But as discussed

in the context of Fig. 1, we do not expect this expansion

to be convergent for mf ≥ 0.015. We have nevertheless

attempted to fit our Nf = 10 results using NLO chiral per-

turbation theory, as done previously for Nf = 2 [1] and

Nf = 6 [28], finding (at Nf = 10) generally large values

of χ2/d.o.f. and best-fit values pointing to a poorly conver-

gent expansion. We omit the details of these fits here, but

will present them in a future work.

An alternative, crude approach is to use the extrapola-

tion formula MP ∼ bPm1/2
for the pseudoscalar mass,

and the linear expression MX ∼ aX + bXm for the other

masses and decay constants. In Fig. 3, we compare fits of

this type for the vector and axial-vector masses to mass-

deformed conformal fits with fixed γ� = 1, a value within

the errors of our global conformal fit. Within the range of

fermion masses considered, we cannot clearly distinguish

this simple linear dependence from the power-law behavior

of the mass-deformed conformal fits based on our current

results. We also show fit results for the pseudoscalar mass;

under either the conformal or chirally broken hypothesis,

this state scales as MP ∼ m1/2
, so only a single fit is

shown.

Discussion We have presented here the first non-

perturbative calculation of the spectrum for an SU(3)
gauge theory with Nf = 10 light fermions in the fun-

(shown for mf>=0.015
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Taking a closer look

• Can’t decisively tell power-law fits (blue) from pure linear (red) over the range 
of masses available...but the common power law m1/2 working for all states is 
suggestive at least.
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One more thing...

• I’ve mostly ignored the coefficients CX so far, because it’s hard to interpret 
exactly how meaningful they are, and can’t compare between different 
theories (buried dependence on mass scale, gamma, lattice cutoff.)

• However, if I start taking ratios of those coefficients, the junk cancels and a 
strange pattern emerges:  (caveat: no correlations included)

ratio Nf = 10 Nf = 12
CV /CP 1.18(24) 1.18(4)
CA/CP 1.49(31) 1.50(5)
CN/CP 1.76(36) 1.81(6)
CN∗/CP 2.33(51) 1.81(6)
CFP /CP 0.132(27) 0.156(5)

• Completely different lattice actions, different simulation groups, different 
volumes, and most importantly different theories!  Why do these ratios seem 
to agree?
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Conclusion

• Theories other than QCD is a very active topic of current lattice research, and 
new ground is being explored.  Original attempts to investigate the conformal 
window frustrated by need for mass term, but starting to realize that it can be 
used to our advantage

• Framework for mass-deformed CFT is very young and not completely 
rigorous, especially for certain channels.  Still, it can be used to accurately 
describe lattice spectrum results, and resulting extraction of mass anomalous 
dimension shows good overlap with more standard approach

• SU(2) 2-flavor adjoint and SU(3) 12-flavor fund. shown as examples for 
theories where the framework can be applied, but the mass dimension is 
small.  For SU(3) 10-flavor, our simulation results still need refinement, but 
preliminary indications of gamma ~ 1, in agreement with other lattice work.

• 10f update in progress - more volumes, better combination, glueballs.
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